Chromatic polynomials and chromaticity of some linear h-hypergraphs

CHF 61.60
Auf Lager
SKU
H81R77D2RCU
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

For a century, one of the most famous problems in mathematics was to prove the four-color theorem.In 1912, George Birkhoff proposed a way to tackling the four-color conjecture by introduce a function P(M, t), defined for all positive integer t, to be the number of proper t-colorings of a map M. This function P(M, t)in fact a polynomial in t is called chromatic polynomial of M. If one could prove that P(M, 4)0 for all maps M, then this would give a positive answer to the four-color problem. In this book, we have proved the following results: (1)Recursive form of the chromatic polynomials of hypertree, Centipede hypergraph, elementary cycle, Sunlet hypergraph, Pan hypergraph, Duth Windmill hypergraph, Multibridge hypergraph, Generalized Hyper-Fan, Hyper-Fan, Generalized Hyper-Ladder and Hyper-Ladder and also prove that these hypergraphs are not chromatically uniquein the class of sperenian hypergraphs. (2)Tree form and Null graph representation of the chromatic polynomials of elementary cycle, uni-cyclic hypergraph and sunflower hypergrpah. (3)Generalization of a result proved by Read for graphs to hypergraphs and prove that these kinds of hypergraphs are not chromatically unique.

Autorentext

Muhammad Kashif is a lecturer of mathematics in G.C.T Rasul, Mandi Bahaudin Pakistan since July 2010.He have completed his MS(Math) degree from National university of computer and emerging sciences Lahore Pakistan.His area of research is chromaticity of hypergraphs.He present his research work in different National and International conferences.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783639348231
    • Sprache Englisch
    • Größe H220mm x B150mm x T7mm
    • Jahr 2011
    • EAN 9783639348231
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-639-34823-1
    • Titel Chromatic polynomials and chromaticity of some linear h-hypergraphs
    • Autor Muhammad Kashif
    • Gewicht 195g
    • Herausgeber VDM Verlag
    • Anzahl Seiten 120
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38