Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Classical and Stochastic Laplacian Growth
Details
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph.
Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.
Combines features of an in-depth monograph and a highly instructive survey of state-of-the-art techniques and results Addresses graduate students and researchers in analysis and its applications Contains plenty of graphical representations and concrete problems?
Inhalt
1 Introduction and Background.- 2 Rational and Other Explicit Strong Solutions.- 3 Weak Solutions and Related Topics.- 4 Geometric Properties.- 5 Capacities and Isoperimetric Inequalities.- 6 Laplacian Growth and Random Matrix Theory.- 7 Integrability and Moments.- 8 Shape Evolution and Integrability.- 9 Stochastic Löwner and Löwner-Kufarev Evolution.- References.- List of Symbols.- Index.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319082868
- Sprache Englisch
- Auflage 2014
- Größe H241mm x B160mm x T24mm
- Jahr 2014
- EAN 9783319082868
- Format Fester Einband
- ISBN 3319082868
- Veröffentlichung 04.12.2014
- Titel Classical and Stochastic Laplacian Growth
- Autor Björn Gustafsson , Alexander Vasil'ev , Razvan Teodorescu
- Untertitel Advances in Mathematical Fluid Mechanics
- Gewicht 664g
- Herausgeber Springer International Publishing
- Anzahl Seiten 332
- Lesemotiv Verstehen
- Genre Mathematik