Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Classification of Medical Data with HTM Cortical Learning Algorithms
Details
Medical data analysis is an important task and the lives of patients often depend on it. However, the analysis itself is often repetitive and time-consuming. Algorithms for this tasks need to have a very high success rate and need to be understandable to work with their parameters. This work will examine a general algorithm for various data types: The Hierarchical Temporal Memory learning algorithm (HTM). It is proposed to be very flexible and to work on any kind of data. The HTM algorithm was implemented and tested with two datasets: Medical images on the one hand and ECG recordings on the other. The proposed algorithm is only presented with a limited data input method and a small input size by its authors. These properties needed to be modified to support a bigger amount of data and also various data types. This is done with an own implementation of the HTM algorithm. The results of this work are analyzed and thoughts and ideas for future development are given at the end.
Autorentext
Thomas Muders, M.Sc.: Studied Computer Science at the Leibniz University of Hanover with core subjects Datamining, Databases and Artificial Intelligence.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639491920
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2013
- EAN 9783639491920
- Format Kartonierter Einband
- ISBN 3639491920
- Veröffentlichung 13.12.2013
- Titel Classification of Medical Data with HTM Cortical Learning Algorithms
- Autor Thomas Muders
- Untertitel Examination of the proposed HTM algorithm with real medical data
- Gewicht 149g
- Herausgeber AV Akademikerverlag
- Anzahl Seiten 88
- Genre Informatik