CMARS: A New Contribution to Nonparametric Regression with MARS

CHF 97.55
Auf Lager
SKU
H5F06GI94DA
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This book is originated from my MSc thesis supervised by Prof. Dr. Gerhard-Wilhelm Weber at Institute of Applied Mathematics (IAM), and Assoc. Prof. Dr. nci Batmaz at Department of Statistics, Middle East Technical University (METU), Turkey. Multivariate adaptive regression splines (MARS) denotes a modern methodology from statistical learning which is very important in both classification and regression, with an increasing number of applications in many areas of science, economy and technology. CMARS which is developed at IAM, METU, as an alternative approach to the well-known data mining tool MARS. CMARS is based on a penalized residual sum of squares for MARS as a Tikhonov regularization problem. It treats this problem by a continuous optimization technique called Conic Quadratic Programming. The boundaries of this optimization problem are determined by the multiobjective optimization approach which provides us many alternative solutions. Based on these theoretical and algorithmical studies, this work also contains applications on the data for the quality control. By these applications, MARS and our new method CMARS are compared.

Autorentext

MSc. Fatma Yerlikaya-Özkurt has her educational background in mathematics, at Department of Mathematics in Ankara University, Turkey. She is working on refinements, extensions, modern applications of CMARS by advanced methods of applied mathematics and statistics at Institute of Applied Mathematics, Middle East Technical University, Turkey.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783844308495
    • Sprache Englisch
    • Größe H220mm x B150mm x T13mm
    • Jahr 2011
    • EAN 9783844308495
    • Format Kartonierter Einband
    • ISBN 3844308490
    • Veröffentlichung 03.03.2011
    • Titel CMARS: A New Contribution to Nonparametric Regression with MARS
    • Autor Fatma Yerlikaya-Özkurt
    • Untertitel An Application of CMARS to Data Mining for Quality Control in Manufacturing
    • Gewicht 334g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 212
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38