Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Coloring of Trees
Details
Vertex and edge coloring have their diverse applications in problems such as time tabling and scheduling, frequency assignment for spectrum, register allocation, pattern matching, analysis of biological and archeological data, etc. An l-vertex-coloring is a generalized version of the vertex coloring of a graph with integers that asks assigning colors to vertices such that any two vertices u and v get different colors if dist(u,v) is at most l, where dist(u,v) denotes the length of the shortest path between u and v in G, l being a nonnegative integer. A coloring is optimal if it uses minimum number of distinct colors. The l-vertex-coloring problem is to find an optimal l-vertex-coloring of a graph G. An l-edge-coloring is defined similar to the l-vertex-coloring problem on G. Both l-vertex-coloring and l-edge-coloring problems are NP-hard in general. In this research work, we present polynomial time algorithms for both l-vertex-coloring and l-edge-coloring of trees. We also compute the upper bound of number of colors to be used in l-vertex-coloring. This book will especially be helpful to researchers in Graph Theory, Computational Geometry, Algorithms and Scheduling.
Autorentext
Tanveer Awal, MSc in Computer Science and Engineering. Assistant Professor in Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639352931
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2011
- EAN 9783639352931
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-35293-1
- Titel Coloring of Trees
- Autor Tanveer Awal , M. Mahbubuzzaman
- Untertitel l-vertex-coloring and l-edge-coloring
- Herausgeber VDM Verlag
- Anzahl Seiten 60
- Genre Mathematik