Combinatorial Machine Learning

CHF 129.55
Auf Lager
SKU
SQ1E36MU3F9
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book explores decision trees and decision rule systems, rules and reducts, examines relationships among these objects and reviews the design of algorithms for construction of trees, rules and reducts. Includes carefully selected illustrative proofs.

Decision trees and decision rule systems are widely used in different applications

as algorithms for problem solving, as predictors, and as a way for

knowledge representation. Reducts play key role in the problem of attribute

(feature) selection. The aims of this book are (i) the consideration of the sets

of decision trees, rules and reducts; (ii) study of relationships among these

objects; (iii) design of algorithms for construction of trees, rules and reducts;

and (iv) obtaining bounds on their complexity. Applications for supervised

machine learning, discrete optimization, analysis of acyclic programs, fault

diagnosis, and pattern recognition are considered also. This is a mixture of

research monograph and lecture notes. It contains many unpublished results.

However, proofs are carefully selected to be understandable for students.

The results considered in this book can be useful for researchers in machine

learning, data mining and knowledge discovery, especially for those who are

working in rough set theory, test theory and logical analysis of data. The book

can be used in the creation of courses for graduate students.


A rough set approach to combinatorial machine learning Presents applications for supervised machine learning, discrete optimization, analysis of acyclic programs, fault diagnosis and pattern recognition Written by leading experts in the field

Inhalt

Part I Tools.- Part II Applications.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642269011
    • Auflage 2011
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T11mm
    • Jahr 2013
    • EAN 9783642269011
    • Format Kartonierter Einband
    • ISBN 364226901X
    • Veröffentlichung 03.08.2013
    • Titel Combinatorial Machine Learning
    • Autor Beata Zielosko , Mikhail Moshkov
    • Untertitel A Rough Set Approach
    • Gewicht 306g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 196

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470