Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Compactness theorem
CHF 43.15
Auf Lager
SKU
CEPQCED2T8Q
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.The compactness theorem for the propositional calculus is a consequence of Tychonoff's theorem,which says that the product of compact spaces is compact applied to compact Stone spaces hence, the theorem's name. Likewise, it is analogous to the finite intersection property characterization of compactness in topological spaces a collection of closed sets in a compact space has a non-empty intersection iff every finite subcollection has a non-empty intersection.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130269418
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2009
- EAN 9786130269418
- Format Fachbuch
- ISBN 978-613-0-26941-8
- Titel Compactness theorem
- Untertitel Mathematical logic, First-order logic, Model theory, Subset, Consistenc, Propositional calculus Tychonoff's theorem, Compact space, Stone's representation theorem for Boolean algebras
- Gewicht 167g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 100
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung