Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Comparative study of set methods for classification
Details
Ensemble methods are based on the idea of combining the predictions of several classifiers for a better generalization and to compensate for the possible defects of individual predictors.We distinguish two families of methods: Parallel methods (Bagging, Random forests) in which the principle is to average several predictions in the hope of a better result following the reduction of the variance of the average estimator.Sequential methods (Boosting) in which the parameters are iteratively adapted to produce a better mixture.In this work we argue that when the members of a predictor make different errors it is possible to reduce the misclassified examples compared to a single predictor. The performance obtained will be compared using criteria such as classification rate, sensitivity, specificity, recall, etc.
Autorentext
Marcel KATULUMBA MBIYA NGANDU è laureato in Ingegneria Informatica all'Università di Mbujimayi. Dal 2018, è assistente presso il Dipartimento di Informatica dell'Università di Mbujimayi. È un ricercatore in ingegneria del software e costruzione di programmi, sistemi informativi e intelligenza artificiale.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786204696737
- Genre Information Technology
- Anzahl Seiten 52
- Größe H220mm x B150mm x T4mm
- Jahr 2022
- EAN 9786204696737
- Format Kartonierter Einband
- ISBN 6204696734
- Veröffentlichung 17.06.2022
- Titel Comparative study of set methods for classification
- Autor Marcel Katulumba Mbiya Ngandu
- Untertitel Application of Adaboosting and Random Forest to Binary and Multi-class databases
- Gewicht 96g
- Herausgeber Our Knowledge Publishing
- Sprache Englisch