Comparative study of set methods for classification

CHF 59.95
Auf Lager
SKU
ONEJC4CC4C1
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

Ensemble methods are based on the idea of combining the predictions of several classifiers for a better generalization and to compensate for the possible defects of individual predictors.We distinguish two families of methods: Parallel methods (Bagging, Random forests) in which the principle is to average several predictions in the hope of a better result following the reduction of the variance of the average estimator.Sequential methods (Boosting) in which the parameters are iteratively adapted to produce a better mixture.In this work we argue that when the members of a predictor make different errors it is possible to reduce the misclassified examples compared to a single predictor. The performance obtained will be compared using criteria such as classification rate, sensitivity, specificity, recall, etc.

Autorentext

Marcel KATULUMBA MBIYA NGANDU è laureato in Ingegneria Informatica all'Università di Mbujimayi. Dal 2018, è assistente presso il Dipartimento di Informatica dell'Università di Mbujimayi. È un ricercatore in ingegneria del software e costruzione di programmi, sistemi informativi e intelligenza artificiale.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786204696737
    • Genre Information Technology
    • Anzahl Seiten 52
    • Größe H220mm x B150mm x T4mm
    • Jahr 2022
    • EAN 9786204696737
    • Format Kartonierter Einband
    • ISBN 6204696734
    • Veröffentlichung 17.06.2022
    • Titel Comparative study of set methods for classification
    • Autor Marcel Katulumba Mbiya Ngandu
    • Untertitel Application of Adaboosting and Random Forest to Binary and Multi-class databases
    • Gewicht 96g
    • Herausgeber Our Knowledge Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38