Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
COMPARATIVE STUDY ON MODEL SELECTION CRITERIA IN GEE
Details
Model (or variable) selection is an essential part of any statistical analysis. Since a GEE model does not specify a likelihood structure, traditional model selection criteria are not well defined in the GEE approach. In last decade, modified Akaike s Information Criterion (mAIC), modified Bayesian Information Criterion (mBIC), and extended Mallow s Cp are suggested for GEE.Our main goal is to compare the above mentioned model selection criteria of GEE to find the suitable one. For this we conduct an extensive Monte Carlo simulation study to examine the relative performance of these criteria to select the best underlying model. Finally, considering the simulation study results, we apply GCp criterion to maternal morbidity data to select best underlying model and find that model for major pregnancy complications with covariates-education of the respondent, gainful employment, whether wanted the index pregnancy and food supplement appears to be the best choice among all possible models.
Autorentext
Md. Anower Hossain: Lecturer of Applied Statistics, Institute of Statistical Research and Training (ISRT), Dhaka University, Bangladesh. Rozana Rahman: M.S. in Applied Statistics, Institute of Statistical Research and Training (ISRT), Dhaka University. M.Zakir Hossain: Lecturer of Statistics, Biostatistics and Informatics, Dhaka University.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639207187
- Sprache Englisch
- Jahr 2009
- EAN 9783639207187
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-20718-7
- Titel COMPARATIVE STUDY ON MODEL SELECTION CRITERIA IN GEE
- Autor Anower Hossain
- Untertitel MONTE CARLO SIMULATION AND APPLICATION TO MATERNAL MORBIDITY DATA
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 156
- Genre Mathematik