Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics

CHF 84.75
Auf Lager
SKU
VTKPUU72AKL
Stock 1 Verfügbar
Geliefert zwischen Di., 03.02.2026 und Mi., 04.02.2026

Details

The purpose of these lecture notes is to provide an introduction to the theory of complex MongeAmpère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary).
These operators are of central use in several fundamental problems of complex differential geometry (KählerEinstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after BedfordTaylor), MongeAmpère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the CalabiYau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of CaffarelliKohnNirenbergSpruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after PhongSturm and Berndtsson).

Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.


The first self contained presentation of Krylov's stochastic analysis for the complex Monge-Ampere equation A comprehensive presentation of Yau's proof of the Calabi conjecture A great part of the material (both classical results and more recent 4. A pedagogical style, lectures accessible to non experts.developments) has not previously appeared in book form Written in pedagogicalcal style, lectures accessible to non experts Includes supplementary material: sn.pub/extras

Inhalt
1.Introduction.- I. The Local Homogenious Dirichlet Problem.-2. Dirichlet Problem in Domains of Cn.- 3. Geometric Maximality.- II. Stochastic Analysis for the Monge-Ampère Equation.- 4. Probabilistic Approach to Regularity.- III. Monge-Ampère Equations on Compact Manifolds.- 5.The Calabi-Yau Theorem.- IV Geodesics in the Space of Kähler Metrics.- 6. The Riemannian Space of Kähler Metrics.- 7. MA Equations on Manifolds with Boundary.- 8. Bergman Geodesics.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642236686
    • Editor Vincent Guedj
    • Sprache Englisch
    • Auflage 2012
    • Größe H235mm x B155mm x T18mm
    • Jahr 2012
    • EAN 9783642236686
    • Format Kartonierter Einband
    • ISBN 3642236685
    • Veröffentlichung 06.01.2012
    • Titel Complex Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics
    • Untertitel Lecture Notes in Mathematics 2038
    • Gewicht 487g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 320
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38