Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Computational and Machine Learning Tools for Archaeological Site Modeling
Details
This book describes a novel machine-learning based approach to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.
Nominated as an outstanding PhD thesis by the University of Bern, Switzerland Describes novel methods for investigating archaeological settlement patterns and locational preference choices Proposes a machine learning model for archaeological site prediction and detection
Inhalt
Introduction.- Space, Environment and Quantitative approaches in Archaeology.- Predictive Modeling.- Materials and Data.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030885694
- Genre Technology Encyclopedias
- Auflage 1st edition 2022
- Lesemotiv Verstehen
- Anzahl Seiten 316
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T18mm
- Jahr 2023
- EAN 9783030885694
- Format Kartonierter Einband
- ISBN 3030885690
- Veröffentlichung 26.01.2023
- Titel Computational and Machine Learning Tools for Archaeological Site Modeling
- Autor Maria Elena Castiello
- Untertitel Springer Theses
- Gewicht 482g
- Sprache Englisch