Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Computational Intelligence for a Greener Future: Innovations in Renewable Energy Systems
Details
This book aims to explore the intersection of computational intelligence techniques and renewable energy technologies, serving as a valuable resource for researchers, engineers, and policymakers. By compiling cutting-edge research and innovative applications, it seeks to demonstrate how CI can contribute to a more sustainable future, highlighting both theoretical advancements, practical implementations, and future directions.
Nowadays, as the world faces the pressing challenges of climate change and the depletion of fossil fuel resources, the shift toward decarbonization and renewable energy systems has become a vital priority. Innovations in computational intelligence (CI) offer promising opportunities to optimize and manage energy production, distribution, and consumption. By leveraging techniques like nature-inspired optimization algorithms, fuzzy methods, machine learning, and clustering, researchers and practitioners can enhance the efficiency and management of renewable energy systems.
Investigates the convergence of computational intelligence and renewable energy technologies Demonstrates how Computational Intelligence can foster a more sustainable future Compiles leading-edge research and innovative applications
Inhalt
A Review of the Genetic Algorithm Approach in Predictive Maintenance and Energy Forecasting.- Deep Reinforcement Learning in Energy Management System for Fuel Cell Hybrid Vehicles: A Review on Reward Design and Testing Framework.- Forecasting Renewable Energy and Electricity Consumption using Evolutionary Computation.- Enhancing EV Battery Safety: SOH Estimation with Machine Learning.- Short-Term Renewable Energy Forecasting Methods Using Artificial Neural Networks: A Comprehensive Review.- etc...
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783032067319
- Anzahl Seiten 533
- Lesemotiv Verstehen
- Genre Technology
- Editor Mohamed Arezki Mellal, Yusuke Nojima, Naoki Masuyama
- Sprache Englisch
- Herausgeber Springer-Verlag GmbH
- Untertitel Integrating AI and Behavioral Insights to Drive Economic Efficiency and Sustainability
- Größe H235mm x B155mm
- Jahr 2026
- EAN 9783032067319
- Format Fester Einband
- ISBN 978-3-032-06731-9
- Titel Computational Intelligence for a Greener Future: Innovations in Renewable Energy Systems