Computational Mathematics Modeling in Cancer Analysis

CHF 69.15
Auf Lager
SKU
UAMENGB4AU1
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

This book constitutes the refereed proceedings of Third International Workshop on Computational Mathematics Modeling in Cancer Analysis, CMMCA 2024, held in Marrakesh, Morocco, on October 6, 2024, in conjunction with MICCAI 2024.

The 12 full papers presented in this book were carefully reviewed and selected from 14 submissions. CMMCA serves as a platform for collaboration among professionals in mathematics, engineering, computer science, and medicine, focusing on innovative mathematical methods for analyzing complex cancer data.


Inhalt

Unified Modeling Enhanced Multimodal Learning for Precision Neuro-Oncolo.- A Reference-based Approach for Tumor Size Estimation in Monocular Laparoscopic ** Videos.-Follicular Lymphoma Grading Based on 3D-DDcGAN and Bayesian CNN using PET-CT Images.- Multi-channel Multi-model Fusion Module (MMFM) based Circulating Abnormal Cells (CACs) Detection for Lung Cancer early Diagnosis with Fluorescence in Situ Hybridization (FISH) Images.- Domain Game: Disentangle Anatomical Feature for Single Domain Generalized Segmentation.- Attention-fusion Model for Multi-Omics (AMMO) Data Integration in Lung Adenocarcinoma.-PD-L1 Expression Prediction using Scalable Multi Instance Transformer.- Improving Single-Source Domain Generalization via Anatomy-Guided Texture Augmentation for Cervical Tumor Segmentation.-PANDA: Pneumonitis ANomaly Detection using Attention U-Net.- Estimating The Average Treatment Effect using Weighting Methods in Lung Cancer Immunotherapy.- Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging.- Assessment of Radiomics Feature Repeatability and Reproducibility and Their Generalizability Across Image Modalities by Perturbation in Nasopharyngeal Carcinoma Patients.**

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031733598
    • Genre Information Technology
    • Editor Jia Wu, Wenjian Qin, Chao Li, Boklye Kim
    • Lesemotiv Verstehen
    • Anzahl Seiten 122
    • Größe H7mm x B155mm x T235mm
    • Jahr 2024
    • EAN 9783031733598
    • Format Kartonierter Einband
    • ISBN 978-3-031-73359-8
    • Titel Computational Mathematics Modeling in Cancer Analysis
    • Untertitel Third International Workshop, CMMCA 2024, Marrakesh, Morocco, October 6, 2024, Proceedings
    • Gewicht 213g
    • Herausgeber Springer
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38