Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Computational Sustainability
Details
The book at hand gives an overview of the state of the art research in Computational Sustainability as well as case studies of different application scenarios. This covers topics such as renewable energy supply, energy storage and e-mobility, efficiency in data centers and networks, sustainable food and water supply, sustainable health, industrial production and quality, etc. The book describes computational methods and possible application scenarios.
Current research in the emerging field of Computational Sustainability Focusing on novel concepts, models, algorithms, and systems Written by experts in the field Includes supplementary material: sn.pub/extras
Inhalt
Sustainable Development and Computing - an Introduction.- Wind Power Prediction with Machine Learning.- Statistical Learning for Short-Term Photovoltaic Power Predictions.- Renewable Energy Prediction for Improved Utilization and Efficiency in Datacenters and Backbone Networks.- A Hybrid Machine Learning and Knowledge Based Approach to Limit Combinatorial Explosion in Biodegradation Prediction.- Feeding the World with Big Data: Uncovering Spectral Characteristics and Dynamics of Stressed Plants.- Global Monitoring of Inland Water Dynamics: State-of-the-art, Challenges, and Opportunities.- Installing Electric Vehicle Charging Stations City-Scale: How Many and Where?.- Computationally Efficient Design Optimization of Compact Microwave and Antenna Structures.- Sustainable Industrial Processes by Embedded Real-Time Quality Prediction.- Relational Learning for Sustainable Health.- ARM Cluster for Performant and Energy-efficient Storage.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319318561
- Genre Technology Encyclopedias
- Auflage 1st edition 2016
- Editor Jörg Lässig, Katharina Morik, Kristian Kersting
- Lesemotiv Verstehen
- Anzahl Seiten 284
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T21mm
- Jahr 2016
- EAN 9783319318561
- Format Fester Einband
- ISBN 331931856X
- Veröffentlichung 29.04.2016
- Titel Computational Sustainability
- Untertitel Studies in Computational Intelligence 645
- Gewicht 594g
- Sprache Englisch