Computer Vision Using Deep Learning

CHF 73.15
Auf Lager
SKU
8M19704RB77
Stock 1 Verfügbar
Geliefert zwischen Do., 19.02.2026 und Fr., 20.02.2026

Details

Organizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems.

This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You'll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments.

Computer Vision Using Deep Learning offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human intervention, increase capability, and cut the costs.

What You'll Learn

  • Examine deep learning code and concepts to apply guiding principals to your own projects
  • Classify and evaluate various architectures to better understand your options in various use cases
  • Go behind the scenes of basic deep learning functions to find out how they work Who This Book Is For

    Professional practitioners working in the fields of software engineering and data science. A working knowledge of Python is strongly recommended. Students and innovators working on advanced degrees in areas related to computer vision and Deep Learning.

    Implement Deep Learning solutions on your own systems to bridge the gap between theory and practice Examine the inner workings of the codes and libraries that make Deep Learning applications work Create solutions for computer vision design using Keras and TensorFlow

    Autorentext

    Vaibhav Verdhan is a seasoned data science professional with rich experience spanning across geographies and retail, telecom, manufacturing, health-care and utilities domain. He is a hands-on technical expert and has led multiple engagements in Machine Learning and Artificial Intelligence. He is a leading industry expert, is a regular speaker at conferences and meet-ups and mentors students and professionals. Currently he resides in Ireland and is working as a Principal Data Scientist.

    Inhalt
    Chapter 1 Introduction to Computer Vision and Deep Learning.- Chapter 2 Nuts and Bolts of Deep Learning for Computer Vision.- Chapter 3 Image Classification using LeNet.- Chapter 4 VGGNet and AlexNext Networks.- Chapter 5 Object Detection Using Deep Learning.- Chapter 6 Facial Recognition and Gesture Recognition.- Chapter 7 Video Analytics Using Deep Learning.- Chapter 8 End-to-end Model Development.- Appendix.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781484266151
    • Sprache Englisch
    • Auflage 1st ed.
    • Größe H235mm x B155mm x T17mm
    • Jahr 2021
    • EAN 9781484266151
    • Format Kartonierter Einband
    • ISBN 978-1-4842-6615-1
    • Veröffentlichung 15.02.2021
    • Titel Computer Vision Using Deep Learning
    • Autor Vaibhav Verdhan
    • Untertitel Neural Network Architectures with Python and Keras
    • Gewicht 505g
    • Herausgeber APRESS
    • Anzahl Seiten 308
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38