Concise Guide to Quantum Machine Learning

CHF 196.75
Auf Lager
SKU
BPPUC7PRM90
Stock 1 Verfügbar
Geliefert zwischen Do., 20.11.2025 und Fr., 21.11.2025

Details

This book offers a brief but effective introduction to quantum machine learning (QML). QML is not merely a translation of classical machine learning techniques into the language of quantum computing, but rather a new approach to data representation and processing. Accordingly, the content is not divided into a classical part that describes standard machine learning schemes and a quantum part that addresses their quantum counterparts. Instead, to immerse the reader in the quantum realm from the outset, the book starts from fundamental notions of quantum mechanics and quantum computing. Avoiding unnecessary details, it presents the concepts and mathematical tools that are essential for the required quantum formalism. In turn, it reviews those quantum algorithms most relevant to machine learning. Later chapters highlight the latest advances in this field and discuss the most promising directions for future research.

To gain the most from this book, a basic grasp of statistics and linear algebra is sufficient; no previous experience with quantum computing or machine learning is needed. The book is aimed at researchers and students with no background in quantum physics and is also suitable for physicists looking to enter the field of QML.



Offers a brief but effective introduction to quantum machine learning Reviews those quantum algorithms most relevant to machine learning Does not require a background in quantum computing or machine learning

Autorentext

Davide Pastorello is an assistant professor in the Department of Information Engineering and Computer Science at the University of Trento.


Inhalt
Chapter 1: Introduction.- Chapter 2: Basics of Quantum Mechanics.- Chapter 3: Basics of Quantum Computing.- Chapter 4: Relevant Quantum Algorithms.- Chapter 5: QML Toolkit.- Chapter 6: Quantum Clustering.- Chapter 7: Quantum Classification.- Chapter 8: Quantum Pattern Recognition.- Chapter 9: Quantum Neural Networks.- Chapter 10: Concluding Remarks.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811968969
    • Genre Information Technology
    • Auflage 1st edition 2023
    • Lesemotiv Verstehen
    • Anzahl Seiten 148
    • Größe H260mm x B183mm x T14mm
    • Jahr 2022
    • EAN 9789811968969
    • Format Fester Einband
    • ISBN 9811968969
    • Veröffentlichung 17.12.2022
    • Titel Concise Guide to Quantum Machine Learning
    • Autor Davide Pastorello
    • Untertitel Machine Learning: Foundations, Methodologies, and Applications
    • Gewicht 489g
    • Herausgeber Springer Nature Singapore
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470