Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Connection Form
CHF 72.95
Auf Lager
SKU
RAR424CJG9R
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Cartan in the first half of the 20th century as part of, and one of the principal motivations for, his method of moving frames. The connection form generally depends on a choice of frame, and so is not a tensorial object. Various generalizations and reinterpretations of the connection form were formulated subsequent to Cartan's initial work. In particular, on a principal bundle, a principal connection is a natural reinterpretation of the connection form as a tensorial object. On the other hand, the connection form has the advantage that it is a differential form defined on the differentiable manifold, rather than on an abstract principal bundle over it. Hence, despite their lack of tensoriality, connection forms continue to be used because of the relative ease of performing calculations with them. In physics, connection forms are also used broadly in the context of gauge theory, through the gauge covariant derivative.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130252120
- Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
- Sprache Englisch
- Größe H220mm x B150mm x T12mm
- Jahr 2009
- EAN 9786130252120
- Format Fachbuch
- ISBN 978-613-0-25212-0
- Titel Connection Form
- Untertitel Mathematics, Differential geometry, Connection (mathematics), Moving frame, Differential form, Élie Cartan, Tensor, Principal bundle, Connection (principal bundle), Differentiable manifold
- Gewicht 326g
- Herausgeber Alphascript Publishing
- Anzahl Seiten 208
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung