Consistency

CHF 49.05
Auf Lager
SKU
6AOR186IS9N
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online.In logic, a consistent theory is one that does not contain a contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model; this is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states that a theory is consistent if there is no formula P such that both P and its negation are provable from the axioms of the theory under its associated deductive system. If these semantic and syntactic definitions are equivalent for a particular logic, the logic is complete. The completeness of sentential calculus was proved by Paul Bernays in 1918 and Emil Post in 1921, while the completeness of predicate calculus was proved by Kurt Gödel in 1930, and consistency proofs for arithmetics restricted with respect to the induction axiom schema were proved by Ackermann (1924), von Neumann (1927) and Herbrand (1931). Stronger logics, such as second-order logic, are not complete.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130750442
    • Editor Frederic P. Miller, Agnes F. Vandome, John McBrewster
    • Größe H6mm x B220mm x T150mm
    • EAN 9786130750442
    • Format Fachbuch
    • Titel Consistency
    • Gewicht 160g
    • Herausgeber Alphascript Publishing
    • Anzahl Seiten 108
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38