Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Convergence of Dependent Random Variables
Details
Central Limit Theorems, Rates of Convergence are derived for dependent random variables, with relaxed conditions on the dependence. Most of known mixing conditions like strong (alpha-) mixing, absolute regular (beta-mixing),... will satisfy them. This new notion of measure of dependence is developed naturally from the classical Characteristic Function Method, less intuitive but may be more suitable in applications than mixing ones. As it is born from the well-known tool for independent r.v.s's Limit Theorems. Theorems and examples given here prove this notion. Otherwise, it may reach the limit in process of defining measure of the dependence, as argued in this book. On the other aspect, almost sure convergence of adapted sequence, especially of Martingale-like one, is discussed. C-sequence is created, showed not comparative with Amart, Martingale-in-the-limit, by examples. It also is a natural extension of Martingale, derived by seeking condition ensuring a.s. convergence. Also, a phi-mixing Strong Law and some examples of Linear Process are given.
Autorentext
D. Q. Tuyen, Ph.D.: Graduated at Eötvös Loránd University in Budapest. Obtained Ph.D. at Karl-Weierstrass-Institute of Mathematics in Berlin. Researcher at Institute of Mathematics of Hanoi.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783843355629
- Sprache Englisch
- Größe H220mm x B150mm x T9mm
- Jahr 2010
- EAN 9783843355629
- Format Kartonierter Einband
- ISBN 3843355622
- Veröffentlichung 13.10.2010
- Titel Convergence of Dependent Random Variables
- Autor Dao Quang Tuyen
- Untertitel Central Limit Theorems, Berry-Esseen Bounds, Martingale-like Sequences, C-sequences, Strong Laws
- Gewicht 203g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 124
- Genre Mathematik