Convergence of Discrete Cubic,Quartic and Quintic Splines

CHF 61.60
Auf Lager
SKU
14UGHC64LDF
Stock 1 Verfügbar
Geliefert zwischen Do., 05.02.2026 und Fr., 06.02.2026

Details

Spline function are essential piecewise polynomial function which meet certain smoothness requirement .The different pieces of spline function of certain order provide much greater degree of freedom in compression to polynomial function of same order.The choice of these degree of freedom make them quite flexible .The spline function have played very important role in the development of the theory of approximation and Numerical analysis .Beside being sufficient and smooth approximation such function have nice mathematical properties(i)The space of spline function of certain order have very convenient basis (ii)Similar to polynomial derivative and anti-derivative of spline function are easily obtained in finite many step.

Autorentext

M.Sc M.Phil. PhD, Birth -Paten Jabalpur M.P.India. H.O.D Department of Mathematics Lakshmi Narain College of technology Bhedaghat Chouk Jabalpur M.P. India .He has 15 Years teaching experience in U.G. and P.G.label and 22 research paper published in international journal

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659260834
    • Sprache Englisch
    • Größe H220mm x B220mm x T150mm
    • Jahr 2012
    • EAN 9783659260834
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-659-26083-4
    • Titel Convergence of Discrete Cubic,Quartic and Quintic Splines
    • Autor Yadvendra Prasad Dubey
    • Untertitel Discrete polynomial Spline Interpolation
    • Herausgeber LAP Lambert Academic Publishing
    • Anzahl Seiten 68
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38