Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Convex and Starlike Mappings in Several Complex Variables
Details
This interesting book deals with the theory of convex and starlike biholomorphic mappings in several complex variables. The underly ing theme is the extension to several complex variables of geometric aspects of the classical theory of univalent functions. Because the author's introduction provides an excellent overview of the content of the book, I will not duplicate the effort here. Rather, I will place the book into historical context. The theory of univalent functions long has been an important part of the study of holomorphic functions of one complex variable. The roots of the subject go back to the famous Riemann Mapping Theorem which asserts that a simply connected region n which is a proper subset of the complex plane C is biholomorphically equivalent to the open unit disk ~. That is, there is a univalent function (holo morphic bijection) I : ~ -+ n. In the early part of this century work began to focus on the class S of normalized (f (0) = 0 and I' (0) = 1) univalent functions defined on the unit disk. The restriction to uni valent functions defined on the unit disk is justified by the Riemann Mapping Theorem. The subject contains many beautiful results that were obtained by fundamental techniques developed by many mathe maticians, including Koebe, Bieberbach, Loewner, Goluzin, Grunsky, and Schiffer. The best-known aspect of univalent function theory is the so-called Bieberbach conjecture which was proved by de Branges in 1984.
Inhalt
I Criteria for starlikeness for holomorphic mappings.- II Criteria for convexity for holomorphic mappings.- III The growth theorem for holomorphic starlike mappings.- IV The growth theorem for holomorphic convex mappings.- V The distortion theorem for the linearinvariant family.- VI The distortion theorem for holomorphic convex and starlike mappings.- VII The geometrical properties for holomorphic convex mappings on the unit ball.- References.- List of symbols.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789401061919
- Sprache Englisch
- Größe H240mm x B160mm x T13mm
- Jahr 2012
- EAN 9789401061919
- Format Kartonierter Einband
- ISBN 9401061912
- Veröffentlichung 06.11.2012
- Titel Convex and Starlike Mappings in Several Complex Variables
- Autor Sheng Gong
- Untertitel Mathematics and Its Applications 435
- Gewicht 372g
- Herausgeber Springer
- Anzahl Seiten 228
- Lesemotiv Verstehen
- Genre Mathematik