Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Coplanarity
CHF 43.15
Auf Lager
SKU
3L9S03G0IL5
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026
Details
High Quality Content by WIKIPEDIA articles! In geometry, a set of points in space is coplanar if all the points lie in the same geometric plane. For example, three distinct points are always coplanar; but a fourth point or more added in space can exist in another plane, incoplanarly. Points can be shown to be coplanar by determining that the scalar product of a vector that is normal to the plane and a vector from any point on the plane to the point being tested is 0. To put this another way, if you have a set of points which you want to determine are coplanar, first construct a vector for each point to one of the other points (by using the distance formula, for example). Secondly, construct a vector which is perpendicular (normal) to the plane to test (for example, by computing the cross product of two of the vectors from the first step). Finally, compute the dot product (which is the same as the scalar product) of this vector with each of the vectors you created in the first step. If the result of each dot product is 0, then all the points are coplanar.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131161575
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131161575
- Format Fachbuch
- Titel Coplanarity
- Herausgeber Betascript Publishing
- Anzahl Seiten 88
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung