Counting Lattice Paths Using Fourier Methods

CHF 98.35
Auf Lager
SKU
N665JS52QKG
Stock 1 Verfügbar
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026

Details

This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference.
Counting Lattice Paths Using Fourier Methods is ideal for upper-undergraduates and graduate students studying combinatorics or other areas of mathematics, as well as computer science or physics. Instructors will also find this a valuable resource for use in their seminars. Readers should have a firm understanding of calculus, including integration, sequences, and series, as well as a familiarity with proofs and elementary linear algebra.

Introduces a unique technique to count lattice paths by using the discrete Fourier transform Explores the interconnection between combinatorics and Fourier methods Motivates students to move from one-dimensional problems to higher dimensions Presents numerous exercises with selected solutions appearing at the end

Inhalt
Lattice Paths and Corridors.- One-Dimensional Lattice Walks.- Lattice Walks in Higher Dimensions.- Corridor State Space.- Review: Complex Numbers.- Triangular Lattices.- Selected Solutions.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030266950
    • Sprache Englisch
    • Auflage 1st edition 2019
    • Größe H235mm x B155mm x T9mm
    • Jahr 2019
    • EAN 9783030266950
    • Format Kartonierter Einband
    • ISBN 3030266958
    • Veröffentlichung 31.08.2019
    • Titel Counting Lattice Paths Using Fourier Methods
    • Autor Charles Kicey , Shaun Ault
    • Untertitel Applied and Numerical Harmonic Analysis - Lecture Notes in Applied and Numerical
    • Gewicht 236g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 148
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38