D-Modules, Perverse Sheaves, and Representation Theory

CHF 137.00
Auf Lager
SKU
OTVT7RONQVB
Stock 1 Verfügbar
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026

Details

This work examines in detail the foundations of D-module theory and its intersection with perverse sheaves and representation theory. Systematic and carefully written, this is a unique and essential textbook at the graduate level for classroom use or self-study.

D-modules continues to be an active area of stimulating research in such mathematical areas as algebra, analysis, differential equations, and representation theory.

Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory.

To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, and representation theory.


D-modules a stimulating and active area of research The unique text treating an algebraic-analytic approach to D-module theory Examines D-module theory, connecting algebraic geometry and representation theory Clusters with many Springer books written by the authors, Kashiwara, Schapira and others Uses D-module theory to prove the celebrated Kazhdan-Lusztig polynomials Detailed examination with excellent proof of the Riemann-Hilbert correspondence Includes supplementary material: sn.pub/extras

Inhalt
D-Modules and Perverse Sheaves.- Preliminary Notions.- Coherent D-Modules.- Holonomic D-Modules.- Analytic D-Modules and the de Rham Functor.- Theory of Meromorphic Connections.- Regular Holonomic D-Modules.- RiemannHilbert Correspondence.- Perverse Sheaves.- Representation Theory.- Algebraic Groups and Lie Algebras.- Conjugacy Classes of Semisimple Lie Algebras.- Representations of Lie Algebras and D-Modules.- Character Formula of HighestWeight Modules.- Hecke Algebras and Hodge Modules.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09780817643638
    • Übersetzer Kiyoshi Takeuchi
    • Sprache Englisch
    • Größe H235mm x B155mm x T27mm
    • Jahr 2007
    • EAN 9780817643638
    • Format Fester Einband
    • ISBN 978-0-8176-4363-8
    • Veröffentlichung 07.11.2007
    • Titel D-Modules, Perverse Sheaves, and Representation Theory
    • Autor Ryoshi Hotta , Kiyoshi Takeuchi , Toshiyuki Tanisaki
    • Untertitel Progress in Mathematics 236
    • Gewicht 1710g
    • Herausgeber SPRINGER VERLAG GMBH
    • Anzahl Seiten 412
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38