Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data Analysis for Fluorescence Microscopy
Details
The epidermal growth factor receptor (EGFR) is a cell surface receptor, which controls cell growth and division. Mutations affecting the receptor expression could lead to cancer. Analysis of EGFR interactions with living cells requires measuring separations between 5 and 60nm. The separations are calculated by analysing time-series of diffraction limited spots, generated by labelled EGFRs. Finding such time-series manually is time consuming and non-reproducible. This project uses machine learning algorithms in combination with understanding of the data collection process and analysis requirements to optimise the data selection process, by automatically rejecting non-analysable time-series. The comparison to the manual process shows that the automated process significantly decreases the time required for data selection and decreases the uncertainty in the distance measurements.
Autorentext
Teodor Boyadzhiev graduated bachelor degree in The University of Edinburgh in 2013. His education continued by pursuing PhD degree in King's College London and graduated in 2021. Currently he works at the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786200114129
- Genre Information Technology
- Anzahl Seiten 300
- Größe H220mm x B150mm x T18mm
- Jahr 2022
- EAN 9786200114129
- Format Kartonierter Einband
- ISBN 6200114129
- Veröffentlichung 01.04.2022
- Titel Data Analysis for Fluorescence Microscopy
- Autor Teodor Boyadzhiev
- Untertitel Optimising Measurements of Epidermal Growth Factor Receptor Oligomers in Cells Using Machine Learning Algorithms
- Gewicht 465g
- Herausgeber LAP LAMBERT Academic Publishing
- Sprache Englisch