Data Analytics for Traditional Chinese Medicine Research

CHF 137.00
Auf Lager
SKU
4S9FHRBO7O8
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This contributed volume explores how data mining, machine learning, and similar statistical techniques can analyze the types of problems arising from Traditional Chinese Medicine (TCM) research. The book focuses on the study of clinical data and the analysis of herbal data. Challenges addressed include diagnosis, prescription analysis, ingredient discoveries, network based mechanism deciphering, pattern-activity relationships, and medical informatics. Each author demonstrates how they made use of machine learning, data mining, statistics and other analytic techniques to resolve their research challenges, how successful if these techniques were applied, any insight noted and how these insights define the most appropriate future work to be carried out. Readers are given an opportunity to understand the complexity of diagnosis and treatment decision, the difficulty of modeling of efficacy in terms of herbs, the identification of constituent compounds in an herb, the relationship between these compounds and biological outcome so that evidence-based predictions can be made. Drawing on a wide range of experienced contributors, Data Analytics for Traditional Chinese Medicine Research is a valuable reference for professionals and researchers working in health informatics and data mining. The techniques are also useful for biostatisticians and health practitioners interested in traditional medicine and data analytics.

Presents a data analytic approach for an efficient way to analyze the data, to find useful patterns, to generate and validate hypothesis Offers data mining researchers a new domain of study, an area which sits on a wealth of data untouched for development of new algorithms to address the specific nature of this field Provides the biostatistics community and health practitioners a means to analyze Traditional Chinese Medicine (TCM) Includes supplementary material: sn.pub/extras

Inhalt
Foreword.- Searching for Evidence in Traditional Chinese Medicine Research: A Review and New Opportunities.- Causal Complexities of TCM Prescriptions: Understanding the underlying mechanisms of herbal formulation.- Medical Diagnosis by Using Machine Learning Techniques.- Network based deciphering of the mechanism of TCM.- Prescription Analysis and Mining.- Statistical Validation of TCM Syndrome Postulates in the Context of Depressive Patients.- Artificial Neural Network-based Chinese Medicine Diagnosis in Decision Support Manner and Herbal Ingredient Discoveries.- Chromatographic Fingerprinting and Chemometric Techniques for Quality Control of Herb Medicines.- A New Methodology for Uncovering the Bioactive Fractions in Herbal Medicine Using the Approach of Quantitative Pattern-Activity Relationship.- An Innovative and Comprehensive Approach in Studying the Complex Synergistic Interactions Among Herbs in Chinese Herbal Formulae.- Data mining in real-world traditional Chinese medicine clinical data warehouse.- TCM data mining and quality evaluation with SAPHRON(TM) system.- An overview on evidence-based medicine and medical informatics in traditional Chinese medicine practice.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319346298
    • Genre Information Technology
    • Auflage Softcover reprint of the original 1st edition 2014
    • Editor Simon K. Poon, Josiah Poon
    • Lesemotiv Verstehen
    • Anzahl Seiten 260
    • Größe H235mm x B155mm x T15mm
    • Jahr 2016
    • EAN 9783319346298
    • Format Kartonierter Einband
    • ISBN 3319346296
    • Veröffentlichung 03.09.2016
    • Titel Data Analytics for Traditional Chinese Medicine Research
    • Gewicht 400g
    • Herausgeber Springer International Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38