Data-Driven Evolutionary Optimization

CHF 229.15
Auf Lager
SKU
EFRK01CR5D3
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Intended for researchers and practitioners alike, this book covers carefully selected yet broad topics in optimization, machine learning, and metaheuristics. Written by world-leading academic researchers who are extremely experienced in industrial applications, this self-contained book is the first of its kind that provides comprehensive background knowledge, particularly practical guidelines, and state-of-the-art techniques. New algorithms are carefully explained, further elaborated with pseudocode or flowcharts, and full working source code is made freely available.

This is followed by a presentation of a variety of data-driven single- and multi-objective optimization algorithms that seamlessly integrate modern machine learning such as deep learning and transfer learning with evolutionary and swarm optimization algorithms. Applications of data-driven optimization ranging from aerodynamic design, optimization of industrial processes, to deep neural architecture search are included.


Includes a brief introduction to mathematical programming, metaheuristic algorithms, and machine learning techniques Presents a systematic description of most recent research advances in data-driven evolutionary optimization, including surrogate-assisted single-, multi-, and many-objective optimization Introduces various intuitive and mathematical surrogate management strategies, such as the trust region method and acquisition functions in Bayesian optimization Provides applications of data-driven optimization to engineering design, automation of process industry, health care, and automated machine learning

Inhalt
Introduction to Optimization.- Classical Optimization Algorithms.- Evolutionary and Swarm Optimization.- Introduction to Machine Learning.- Data-Driven Surrogate-Assisted Evolutionary Optimization.- Multi-Surrogate-Assisted Single-Objective Optimization.- Surrogate-Assisted Multi-Objective Evolutionary Optimization.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030746391
    • Genre Technology Encyclopedias
    • Auflage 1st edition 2021
    • Lesemotiv Verstehen
    • Anzahl Seiten 420
    • Herausgeber Springer International Publishing
    • Größe H241mm x B160mm x T29mm
    • Jahr 2021
    • EAN 9783030746391
    • Format Fester Einband
    • ISBN 3030746399
    • Veröffentlichung 29.06.2021
    • Titel Data-Driven Evolutionary Optimization
    • Autor Yaochu Jin , Chaoli Sun , Handing Wang
    • Untertitel Integrating Evolutionary Computation, Machine Learning and Data Science
    • Gewicht 793g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470