Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data-Driven Modelling of Gas Turbine Engines
Details
Nowadays, gas turbine engines (GTE) are widely used in jet engines, oil field platforms, power plants, refineries, petrochemical plants, and gas stations for power generation. One of the best strategies to manufacture GTE with higher efficiency, durability, and reliability is to employ modelling and simulation techniques. Remarkable studies have been done so far in the area of data-driven modelling of GTE, each with its own advantages and limitations. The outcome of these activities has had significant impacts on optimization and cost-cuts of design and manufacturing processes, and improvements in the condition monitoring, operation, fault diagnosis, and maintenance planning of these systems. This book investigates and compares novel linear and nonlinear data-driven modelling of gas turbine engines. The linear models consist of Ridge, Lasso, and Multi-Task Elastic-Net models, which are built based on linear regressions. A nonlinear model of the system is set up and validated by employing recurrent neural networks (RNN). It is shown that the resulting RNN model can be applied reliably for performance prediction of the engine by following changes in the system inputs.
Autorentext
HAMID ASGARI ha conseguito il dottorato di ricerca in Ingegneria meccanica presso l'Università di Canterbury (UC) in Nuova Zelanda. Ha lavorato come ricercatore in centri di ricerca internazionali. Le sue competenze di ricerca riguardano l'analisi dei dati, l'apprendimento automatico, l'apprendimento profondo, la dinamica dei sistemi e la "modellazione, simulazione e controllo" dei sistemi industriali.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786206162063
- Genre Mechanical Engineering
- Sprache Englisch
- Anzahl Seiten 96
- Herausgeber LAP LAMBERT Academic Publishing
- Größe H220mm x B150mm x T6mm
- Jahr 2023
- EAN 9786206162063
- Format Kartonierter Einband
- ISBN 6206162060
- Veröffentlichung 01.06.2023
- Titel Data-Driven Modelling of Gas Turbine Engines
- Autor Hamid Asgari
- Untertitel DE
- Gewicht 161g