Data-Driven Optimization and Knowledge Discovery for an Enterprise Information System

CHF 107.95
Auf Lager
SKU
1F0NR69NNSQ
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book provides a comprehensive set of optimization and prediction techniques for an enterprise information system. Readers with a background in operations research, system engineering, statistics, or data analytics can use this book as a reference to derive insight from data and use this knowledge as guidance for production management. The authors identify the key challenges in enterprise information management and present results that have emerged from leading-edge research in this domain. Coverage includes topics ranging from task scheduling and resource allocation, to workflow optimization, process time and status prediction, order admission policies optimization, and enterprise service-level performance analysis and prediction. With its emphasis on the above topics, this book provides an in-depth look at enterprise information management solutions that are needed for greater automation and reconfigurability-based fault tolerance, as well as to obtain data-driven recommendations for effective decision-making.


Addresses system complexity by studying the information system as a mass-customization enterprise Provides practical engineering solutions for real-time applications and data-driven prediction Uses real data and an industry-strength simulation platform that mimics the features of a real enterprise Offers a technology-synthesis platform, combining different techniques such as simulation, optimization, statistical methods and machine-learning algorithms

Autorentext
Qing Duan is a data scientist at Paypal, Inc. Krishnendu Chakrabarty is a Professor in the Department of Electrical and Computer Engineering at Duke University. Jun Zeng is a principal researcher at Hewlett-Packard Labs.

Inhalt
Introduction.- Production Simulation Platform.- Production Workflow Optimizations.- Predictions of Process-Execution Time and Process-Execution Status.- Optimization of Order-Admission Policies.- Conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319364292
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage Softcover reprint of the original 1st edition 2015
    • Sprache Englisch
    • Anzahl Seiten 172
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T10mm
    • Jahr 2016
    • EAN 9783319364292
    • Format Kartonierter Einband
    • ISBN 3319364294
    • Veröffentlichung 15.10.2016
    • Titel Data-Driven Optimization and Knowledge Discovery for an Enterprise Information System
    • Autor Qing Duan , Jun Zeng , Krishnendu Chakrabarty
    • Gewicht 303g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470