Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data-Driven Process Discovery and Analysis
Details
This book constitutes revised selected papers from the 8th and 9th IFIP WG 2.6 International Symposium on Data-Driven Process Discovery and Analysis, SIMPDA 2018, held in Seville, Spain, on December 1314, 2018, and SIMPDA 2019, held in Bled, Slovenia, on September 8, 2019. From 16 submissions received for SIMPDA 2018 and 9 submissions received for SIMPDA 2019, 3 papers each were carefully reviewed and selected for presentation in this volume. They cover theoretical issues related to process representation, discovery, and analysis or provide practical and operational examples of their application.
Inhalt
Designing Process-Centric Blockchain-based Architectures: A Case Study in e-voting as a Service.- Extracting Multiple Viewpoint Models from Relational Databases.- Standardizing Process-Data Exploitation by means of a Process-Instance Metamodel.- Exploiting Event Log Event Attributes in RNN Based Prediction.- General Model for Tracking Manufacturing Products Using Graph Databases.- Supporting Confidentiality in Process Mining Using Abstraction and Encryption.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030466329
- Editor Paolo Ceravolo, María Teresa Gómez-López, Maurice van Keulen
- Sprache Englisch
- Auflage 1st edition 2020
- Größe H235mm x B155mm x T8mm
- Jahr 2020
- EAN 9783030466329
- Format Kartonierter Einband
- ISBN 3030466329
- Veröffentlichung 25.04.2020
- Titel Data-Driven Process Discovery and Analysis
- Untertitel 8th IFIP WG 2.6 International Symposium, SIMPDA 2018, Seville, Spain, December 13-14, 2018, and 9th International Symposium, SIMPDA 2019, Bled, Slovenia, September 8, 2019, Revised Selected Papers
- Gewicht 219g
- Herausgeber Springer International Publishing
- Anzahl Seiten 136
- Lesemotiv Verstehen
- Genre Informatik