Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data Fusion Methodology and Applications: Volume 31
Details
Data Fusion Methodology and Applications explores the data-driven discovery paradigm in science and the need to handle large amounts of diverse data. Drivers of this change include the increased availability and accessibility of hyphenated analytical platforms, imaging techniques, the explosion of omics data, and the development of information technology. As data-driven research deals with an inductive attitude that aims to extract information and build models capable of inferring the underlying phenomena from the data itself, this book explores the challenges and methodologies used to integrate data from multiple sources, analytical platforms, different modalities, and varying timescales.
Autorentext
Marina Cocchi currently serves as the Associate Professor in the University of Modena and Reggio Emilia's Department of Chemical and Geological Sciences. She has dedicated nearly two decades of chemometric and data analysis research to the university, exploring topics ranging from data fusion procedures to development and application of multivariates. Cocchi has also contributed to over one hundred scientific publications throughout her career.
Inhalt
- Introduction: ways and means to deal with data from multiple sources
- Framework for low-level data fusion
- General framing of low-high-mid level Data Fusion with examples in life science
- Numerical optimization based algorithms for data fusion
- Recent advances in High-Level Fusion Methods to classify multiple analytical Chemical Data
- SO-(N)-PLS: Sequentially Orthogonalized-(N)-PLS in Data Fusion context
- ComDim methods for the analysis of multi block data in a data fusion perspective
- Data fusion via multiset analysis
- Dealing with data heterogeneity in a data fusion perspecitve: models, methodologies, and algorithms
- Data Fusion strategies in food analysis
- Data fusion for image analysis
- Data fusion using window based models: Application to outlier detection, classification, and forensic image analysis
Weitere Informationen
- Allgemeine Informationen
- GTIN 09780444639844
- Genre Chemistry
- Editor Marina Cocchi
- Anzahl Seiten 396
- Herausgeber Elsevier Science & Technology
- Größe H229mm x B152mm
- Jahr 2019
- EAN 9780444639844
- Format Kartonierter Einband
- ISBN 978-0-444-63984-4
- Veröffentlichung 14.05.2019
- Titel Data Fusion Methodology and Applications: Volume 31
- Autor Marina (Associate Professor, University of Cocchi
- Gewicht 710g
- Sprache Englisch