Data-Intensive Text Processing with MapReduce

CHF 50.35
Auf Lager
SKU
6PQ8L8A9VVC
Stock 1 Verfügbar
Geliefert zwischen Mo., 02.02.2026 und Di., 03.02.2026

Details

Our world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion ofMapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks

Autorentext

Jimmy Lin is an Associate Professor in the iSchool (College of Information Studies) at the University of Maryland, College Park. He directs the recently-formed Cloud Computing Center, an interdisciplinary group that explores the many aspects of cloud computing as it impacts technology, people, and society. Lin's research lies at the intersection of natural language processing and information retrieval, with a recent emphasis on scalable algorithms and large-data processing. He received his Ph.D. from MIT in Electrical Engineering and Computer Science in 2004.


Inhalt
Introduction.- MapReduce Basics.- MapReduce Algorithm Design.- Inverted Indexing for Text Retrieval.- Graph Algorithms.- EM Algorithms for Text Processing.- Closing Remarks.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031010088
    • Genre Information Technology
    • Lesemotiv Verstehen
    • Anzahl Seiten 180
    • Größe H235mm x B191mm x T11mm
    • Jahr 2010
    • EAN 9783031010088
    • Format Kartonierter Einband
    • ISBN 3031010086
    • Veröffentlichung 28.04.2010
    • Titel Data-Intensive Text Processing with MapReduce
    • Autor Chris Dyer , Jimmy Lin
    • Untertitel Synthesis Lectures on Human Language Technologies
    • Gewicht 348g
    • Herausgeber Springer International Publishing
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38