Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data Mining and Knowledge Discovery for Big Data
Details
The field of data mining has made significant and far-reaching advances over the past three decades. Because of its potential power for solving complex problems, data mining has been successfully applied to diverse areas such as business, engineering, social media, and biological science. Many of these applications search for patterns in complex structural information. In biomedicine for example, modeling complex biological systems requires linking knowledge across many levels of science, from genes to disease. Further, the data characteristics of the problems have also grown from static to dynamic and spatiotemporal, complete to incomplete, and centralized to distributed, and grow in their scope and size (this is known as big data). The effective integration of big data for decision-making also requires privacy preservation.
The contributions to this monograph summarize the advances of data mining in the respective fields. This volume consists of nine chapters that address subjects ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction via binary matrix factorization.
Latest research on data mining Presents foundations, social networks and applications Written by leading experts in the field
Inhalt
Aspect and Entity Extraction for Opinion Mining.- Mining Periodicity from Dynamic and Incomplete Spatiotemporal Data.- Spatio-Temporal Data Mining for Climate Data: Advances, Challenges.- Mining Discriminative Subgraph Patterns from Structural Data.- Path Knowledge Discovery: Multilevel Text Mining as a Methodology for Phenomics.- InfoSearch: A Social Search Engine.- Social Media in Disaster Relief: Usage Patterns, Data Mining Tools, and Current Research Directions.- A Generalized Approach for Social Network Integration and Analysis with Privacy Preservation.- A Clustering Approach to Constrained Binary Matrix Factorization.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783642408366
- Auflage 2014
- Editor Wesley W. Chu
- Sprache Englisch
- Genre Allgemeines & Lexika
- Lesemotiv Verstehen
- Größe H241mm x B160mm x T22mm
- Jahr 2013
- EAN 9783642408366
- Format Fester Einband
- ISBN 3642408362
- Veröffentlichung 09.10.2013
- Titel Data Mining and Knowledge Discovery for Big Data
- Untertitel Methodologies, Challenge and Opportunities
- Gewicht 641g
- Herausgeber Springer Berlin Heidelberg
- Anzahl Seiten 316