Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
DATA MINING BASED STREAM MINING APPROACH
Details
The Clustering is one of the most important technique in data mining. It aims partitioning the data into groups of similar objects. That is refered to as clusters. This research compares the StreamKM++ algorithm with the existing work, such as AP, IAPKM and IAPNA. The StreamKM++ algorithm is a new clustering algorithm from the data stream and itto constructs a good clustering of the stream, using a small amount of memory and time.Many researchers have done their work with static clustering algorithm, but in real time the data is dynamic in nature. Such as blogs, web pages, audio and video, etc., Hence, the conventional static technique doesn't support in real time environment. In this work, the StreamKM++ algorithm is used which achieves high clustering performance over traditional AP, IAPKM and IAPNA. The experimental result shows StreamKM++ algorithm achieves the best result compared with existing work. It has increased the average accuracy rate and reduced the computational time, memory and number of iterations.
Autorentext
Die Autorin Dr. S. Shylaja erhielt im März 2022 den Doktortitel in Informatik von der Bharathiar University, Coimbatore. Sie arbeitet derzeit als Assistenzprofessorin in der Abteilung für Computeranwendungen am Sri Ramakrishna College of Arts & Science, Coimbatore.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786207466627
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 88
- Genre IT Encyclopedias
- Gewicht 149g
- Untertitel A STREAM MINING BASED APPROACH FOR DYNAMIC ENVIRONMENT USING K-MEANS++ ALGORITHM
- Größe H220mm x B150mm x T6mm
- Jahr 2024
- EAN 9786207466627
- Format Kartonierter Einband
- ISBN 6207466624
- Veröffentlichung 21.02.2024
- Titel DATA MINING BASED STREAM MINING APPROACH
- Autor Shylaja S
- Sprache Englisch