Data Mining: Foundations and Intelligent Paradigms

CHF 189.55
Auf Lager
SKU
GJJP7JO6849
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Mi., 05.11.2025 und Do., 06.11.2025

Details

There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled DATA MINING: Foundations and Intelligent Paradigms: Volume 1: Clustering, Association and Classification we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.

Latest research in data mining using intelligent paradigms and their applications State-of-the-Art title Written by leading experts in this field

Klappentext

Data mining is one of the most rapidly growing research areas in computer science and statistics. In Volume 1of this three volume series, we have brought together contributions from some of the most prestigious researchers in the fundamental data mining tasks of clustering, association and classification. Each of the chapters is self contained. Theoreticians and applied scientists/ engineers will find this volume valuable. Additionally, it provides a sourcebook for graduate students interested in the current direction of research in these aspects of data mining.


Inhalt
Introductory Chapter.- Clustering Analysis in Large Graphs with Rich Attributes.- Temporal Data Mining: Similarity-Profiled Association Pattern.- Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification.- Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets.- Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation.- Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters.- DepMiner: A method and a system for the extraction of significant dependencies.- Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries.- Text Clustering with Named Entities: A Model, Experimentation and Realization.- Regional Association Rule Mining and Scoping from Spatial Data.- Learning from Imbalanced Data: Evaluation Matters.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642430930
    • Editor Dawn E. Holmes, Lakhmi C Jain
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T20mm
    • Jahr 2014
    • EAN 9783642430930
    • Format Kartonierter Einband
    • ISBN 3642430937
    • Veröffentlichung 26.01.2014
    • Titel Data Mining: Foundations and Intelligent Paradigms
    • Untertitel Volume 1: Clustering, Association and Classification
    • Gewicht 534g
    • Herausgeber Springer
    • Anzahl Seiten 352

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.