Data Mining: Foundations and Intelligent Paradigms

CHF 202.10
Auf Lager
SKU
SKCCN31LHFE
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Data mining is a rapidly growing research area in computer science and statistics. Volume 2 of this three-volume series covers theoretical aspects of the subject, including statistical, Bayesian, time-series and others relevant to health informatics.


There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled DATA MINING: Foundations and Intelligent Paradigms: Volume 2: Core Topics including Statistical, Time-Series and Bayesian Analysis we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.


contains the latest research on data mining research and its applications to health informatics The state of the art of data mining for health informatics is presented in a handbook style Written by leading experts in this field

Klappentext

Data mining is one of the most rapidly growing research areas in computer science and statistics. In Volume 2 of this three volume series, we have brought together contributions from some of the most prestigious researchers in theoretical data mining. Each of the chapters is self contained. Statisticians and applied scientists/ engineers will find this volume valuable. Additionally, it provides a sourcebook for graduate students interested in the current direction of research in data mining.


Inhalt
From the content: Data Mining with Multilayer Perceptrons and Support Vector Machines.- Regulatory Networks under Ellipsoidal Uncertainty - Data Analysis and Prediction by Optimization Theory and Dynamical Systems.- A Visual Environment for Designing and Running Data Mining Workflows in the Knowledge Grid.- Formal framework for the Study of Algorithmic Properties of Objective Interestingness Measures.- Nonnegative Matrix Factorization: Models, Algorithms and Applications.- Visual Data Mining and Discovery with Binarized Vectors.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642434297
    • Editor Dawn E. Holmes, Lakhmi C Jain
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T15mm
    • Jahr 2014
    • EAN 9783642434297
    • Format Kartonierter Einband
    • ISBN 3642434290
    • Veröffentlichung 26.01.2014
    • Titel Data Mining: Foundations and Intelligent Paradigms
    • Untertitel VOLUME 2: Statistical, Bayesian, Time Series and other Theoretical Aspects
    • Gewicht 406g
    • Herausgeber Springer
    • Anzahl Seiten 264

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470