Data Science and Machine Learning

CHF 96.35
Auf Lager
SKU
F64KIAFVS7O
Stock 1 Verfügbar
Geliefert zwischen Mo., 24.11.2025 und Di., 25.11.2025

Details

This book constitutes the proceedings of the 21st Australasian Conference on Data Science and Machine Learning, AusDM 2023, held in Auckland, New Zealand, during December 1113, 2023.
The 20 full papers presented in this book were carefully reviewed and selected from 50 submissions. The papers are organized in the following topical sections: research track and application track. They deal with topics around data science and machine learning in everyday life.

Inhalt
Research Track: Random Padding Data Augmentation.- Unsupervised Fraud Detection on Sparse Rating Networks.- Semi-Supervised Model-Based Clustering for Ordinal Data.- Damage GAN: A Generative Model for Imbalanced Data.- Text-Conditioned Graph Generation Using Discrete Graph Variational Autoencoders.- Boosting QA Performance through SA-Net and AA-Net with the Read+Verify Framework.- Anomaly Detection Algorithms: Comparative Analysis and Explainability Perspectives.- Towards Fairness and Privacy: A Novel Data Pre-processing Optimization Framework for Non-binary Protected Attributes.- MStoCast: Multimodal Deep Network for Stock Market Forecast..- Few Shot and Transfer Learning with Manifold Distributed Datasets.- Mitigating The Adverse Effects of Long-tailed Data on Deep Learning Models.- Shapley Value Based Feature Selection to Improve Generalization of Genetic Programming for High-Dimensional Symbolic Regression.- Hybrid Models for Predicting Cryptocurrency Price Using Financial and Non-Financial Indicators.- Application Track: Multi-Dimensional Data Visualization for Analyzing Materials.- Law in Order: An Open Legal Citation Network for New Zealand.- Enhancing Resource Allocation in IT Projects: The Potentials of Deep Learning-Based Recommendation Systems and Data-Driven Approaches.- A Comparison of One-Class versus Two-Class Machine Learning Models for Wildfire Prediction in California.- Skin Cancer Detection with Multimodal Data: A Feature Selection Approach Using Genetic Programming.- Comparison of Interpolation Techniques for Prolonged Exposure Estimation: A Case Study on Seven years of Daily Nitrogen Oxide in Greater Sydney.- Detecting Asthma Presentations from Emergency Department Notes:An Active Learning Approach.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789819986958
    • Genre Information Technology
    • Auflage 1st edition 2024
    • Editor Diana Benavides-Prado, Sarah Erfani, Yun Sing Koh, Yee Ling Boo, Philippe Fournier-Viger
    • Lesemotiv Verstehen
    • Anzahl Seiten 312
    • Größe H235mm x B155mm x T17mm
    • Jahr 2023
    • EAN 9789819986958
    • Format Kartonierter Einband
    • ISBN 9819986958
    • Veröffentlichung 05.12.2023
    • Titel Data Science and Machine Learning
    • Untertitel 21st Australasian Conference, AusDM 2023, Auckland, New Zealand, December 11-13, 2023, Proceedings
    • Gewicht 476g
    • Herausgeber Springer Nature Singapore
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470