Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Data Science Fundamentals for Python and MongoDB
Details
Build the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms.
The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn't required because complete examples are provided and explained.
Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path to success is rocky at best. The coding examples in this book are concise, accurate, and complete, and perfectly complement the data science concepts introduced.
What You'll Learn
Prepare for a career in data science
Work with complex data structures in Python
Simulate with Monte Carlo and Stochastic algorithms
Apply linear algebra using vectors and matrices
Utilize complex algorithms such as gradient descent and principal component analysis
Wrangle, cleanse, visualize, and problem solve with data
Use MongoDB and JSON to work with data
Who This Book Is ForThe novice yearning to break into the data science world, and the enthusiast looking to enrich, deepen, and develop data science skills through mastering the underlying fundamentalsthat are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming will make learning easier.
Takes an example-driven approach to learning Has everything you need in terms of content and coding to gain fundamental data science skills A focused and easy-to-read fundamentals book
Autorentext
Dr. David Paper is a full professor at Utah State University in the Management Information Systems department. He wrote the book Web Programming for Business: PHP Object-Oriented Programming with Oracle and he has over 70 publications in refereed journals such as Organizational Research Methods, Communications of the ACM, Information & Management, Information Resource Management Journal, Communications of the AIS, Journal of Information Technology Case and Application Research, and Long Range Planning. He has also served on several editorial boards in various capacities, including associate editor. Besides growing up in family businesses, Dr. Paper has worked for Texas Instruments, DLS, Inc., and the Phoenix Small Business Administration. He has performed IS consulting work for IBM, AT&T, Octel, Utah Department of Transportation, and the Space Dynamics Laboratory. Dr. Paper's teaching and research interests include data science, process reengineering, object-oriented programming, electronic customer relationship management, change management, e-commerce, and enterprise integration.Inhalt
- Introduction.- 2. Monte Carlo Simulation and Density Functions.- 3. Linear Algebra.- 4. Gradient Descent.- 5. Working with Data.- 6. Exploring Data.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09781484235966
- Herausgeber Apress
- Anzahl Seiten 228
- Lesemotiv Verstehen
- Genre IT Encyclopedias
- Auflage 1st edition
- Gewicht 353g
- Größe H235mm x B155mm x T13mm
- Jahr 2018
- EAN 9781484235966
- Format Kartonierter Einband
- ISBN 1484235967
- Veröffentlichung 11.05.2018
- Titel Data Science Fundamentals for Python and MongoDB
- Autor David Paper
- Sprache Englisch