Data Science in Engineering, Volume 10

CHF 332.95
Auf Lager
SKU
6ALKQIGUR5D
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Data Science in Engineering, Volume 10: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the tenth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:


  • Novel Data-driven Analysis Methods
  • Deep Learning Gaussian Process Analysis
  • Real-time Video-based Analysis
  • Applications to Nonlinear Dynamics and Damage Detection
  • High-rate Structural Monitoring and Prognostics

    Autorentext
    Ramin Madarshahian-Company: Kount, an Equifax company, Boise, ID, USA ;Francois Hemez-Lawrence Livermore National Laboratory, Livermore, CA, USA

    Inhalt
    Chapter 1. A Meta-Learning Approach to Population-Based Modelling of Structure.-, Chapter 2 State Space Reconstruction from Embeddings of Partial Observables in Structural Dynamic Systems for Structure-Preserving Data-Driven Methods.-, Chapter 3 Chapter 2. State Space Reconstruction from Embeddings of Partial Observables in Structural Dynamic Systems for Structure-Preserving Data-Driven Methods.-, Chapter 4 Composite Neural Network Framework for Modeling Impulsive Nonlinear Dynamic Responses.-, Chapter 5 Towards physics-based metrics for transfer learning in dynamics.-, Chapter 6 Principal Component Analysis of Monitoring Data of a High-Rise Building: The Case Study of Palazzo Lombardia.-, Chapter 7 Optimal Contact-Impact Force Model Selection for Damage Detection in Ball Bearings.-, Chapter 8 Simulation Error Influence on Damage Identification Classifiers Trained by Numerical Data.-, Chapter 9 Structural Health Monitoring in the Context ofNon-Equilibrium Phase Transitions.-, Chapter 10 Synthetic Thermal Image Data Generation using Attention-Based Generative Adversarial Network for Concrete Internal Damage Segmentation.-, Chapter 11 Optimal Fiber Optic Sensor Placement Framework for Structural Health Monitoring of an Aircraft's Wing Spar.-, Chapter 12 Construction Noise Cancellation with Feedback Active Control using Machine Learning.-, Chapter 13 Physics-Informed Data-Driven Reduced-Order Model for Turbomachinery Blisk.-, Chapter 14 High-rate Structural Health Monitoring: Part-II Embedded System Design.-, Chapter 15 Damage Quantification under High-Rate Dynamic Loading and Data Augmentation using Generative Adversarial Network.-, Chapter16 Output-only versus Direct Input-output Structural Condition Monitoring Methods.-, Chapter 17 High-rate Structural Health Monitoring: Part-III Algorithm.-, Chapter 18 A population form via hierarchical Bayesian modelling of the FRF.-, Chapter 19 Lupos: Open-source Scientific Computing in Structural Dynamics.-, Chapter 20 Expert Knowledge-Driven Condition Assessment of Railway Welds from Axle Box Accelerations using Random Forests and Bayesian Logistic Regression.-, Chapter 21 On quantifying data normalisation via cointegration with topological methods.-, Chapter 22 Automatic Selection of Optimal Structures for Population-based Structural Health Monitoring.-, Chapter 23 Online back-propagation of recurrent neural network for forecasting nonstationary structural responses.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031349485
    • Genre Technology Encyclopedias
    • Editor François Hemez, Ramin Madarshahian
    • Lesemotiv Verstehen
    • Anzahl Seiten 200
    • Herausgeber Springer Nature Switzerland
    • Größe H279mm x B210mm x T12mm
    • Jahr 2025
    • EAN 9783031349485
    • Format Kartonierter Einband
    • ISBN 978-3-031-34948-5
    • Veröffentlichung 22.04.2025
    • Titel Data Science in Engineering, Volume 10
    • Untertitel Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics 2023
    • Gewicht 502g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470