Data Science in Engineering, Volume 9

CHF 332.70
Auf Lager
SKU
BTJK3Q5M41V
Stock 1 Verfügbar
Geliefert zwischen Fr., 26.12.2025 und Mo., 29.12.2025

Details

Data Science in Engineering, Volume 9: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:


  • Novel Data-driven Analysis Methods
  • Deep Learning Gaussian Process Analysis
  • Real-time Video-based Analysis
  • Applications to Nonlinear Dynamics and Damage Detection
  • High-rate Structural Monitoring and Prognostics

    Autorentext
    Ramin Madarshahian, Company: Kount, an Equifax company, ID, USA; Francois Hemez, Lawrence Livermore National Laboratory, Livermore, CA, USA

    Klappentext

    Data Science in Engineering, Volume 9: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Novel Data-driven Analysis Methods Deep Learning Gaussian Process Analysis Real-time Video-based Analysis Applications to Nonlinear Dynamics and Damage Detection High-rate Structural Monitoring and Prognostics

    Inhalt
    Chapter 1. Model Updating for Nonlinear Dynamic Digital Twins Using Data-Based Inverse Mapping Models.- Chapter 2. Deep Reinforcement Learning for Active Structure Stabilization.- Chapter 3. Estimation of Structural Vibration Modal Properties Using a Spike-Based Computing Paradigm.- Chapter 4. Environmental-Insensitive Damage Features Based on Transmissibility Coherence.- Chapter 5. Transmittance Anomalies for Model-Based Damage Detection with Finite Element Generated Data and Deep Learning.- Chapter 6. Machine Learning based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faults.- Chapter 7. Structural Damage Detection Framework Using Metaheuristic Algorithms and Optimal Finite Element Modeling.- Chapter 8. On Aspects of Geometry in SHM and Population-Based SHM.- Chapter 9. A Robust PCA-based Framework for Long-Term Condition Monitoring of Civil Infrastructures.- Chapter 10. Data-Driven Parameter Identification for Turbomachinery Blisks.- Chapter 11. Classification of Rail Irregularities from Axle Box Accelerations using Random Forests and Convolutional Neural Networks.- Chapter 12. Development of a Surrogate Model for Structural Health Monitoring of a UAV Wing Spar.- Chapter 13. On a Description of Aeroplanes and Aeroplane Components using Irreducible Element Models.- Chapter 14. Input Estimation of Four-DOF Nonlinear Building Using Probabilistic Recurrent Neural Network.- Chapter 15. Simulation-Based Damage Detection for Composite Structures with Machine Learning Techniques.- Chapter 16. Synthesizing Dynamic Time-series Data for Structures Under Shock Using Generative Adversarial Networks.- Chapter 17. Multi-Layer Input Deep Learning Applied to Ultrasonic Wavefield Measurements.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031041211
    • Genre Technology Encyclopedias
    • Auflage 1st edition 2022
    • Editor Francois Hemez, Ramin Madarshahian
    • Lesemotiv Verstehen
    • Anzahl Seiten 164
    • Herausgeber Springer International Publishing
    • Größe H285mm x B215mm x T15mm
    • Jahr 2022
    • EAN 9783031041211
    • Format Fester Einband
    • ISBN 3031041216
    • Veröffentlichung 05.07.2022
    • Titel Data Science in Engineering, Volume 9
    • Untertitel Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022
    • Gewicht 670g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470