Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Deep Generative Models
Details
This book constitutes the proceedings of the 4th workshop on Deep Generative Models for Medical Image Computing and Computer Assisted Intervention, DGM4MICCAI 2024, held in conjunction with the 27th International conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco in October 2024.
The 21 papers presented here were carefully reviewed and selected from 40 submissions. These papers deal with a broad range of topics, ranging from methodology (such as Causal inference, Latent interpretation, Generative factor analysis) to Applications (such as Mammography, Vessel imaging, Surgical videos and more).
Klappentext
This book constitutes the proceedings of the 4th workshop on Deep Generative Models for Medical Image Computing and Computer Assisted Intervention, DGM4MICCAI 2024, held in conjunction with the 27th International conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024, in Marrakesh, Morocco in October 2024. The 21 papers presented here were carefully reviewed and selected from 40 submissions. These papers deal with a broad range of topics, ranging from methodology (such as Causal inference, Latent interpretation, Generative factor analysis) to Applications (such as Mammography, Vessel imaging, Surgical videos and more).
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031727436
- Herausgeber Springer Nature Switzerland
- Anzahl Seiten 236
- Lesemotiv Verstehen
- Genre Software
- Auflage 2025
- Editor Anirban Mukhopadhyay, Ilkay Oksuz, Yixuan Yuan, Dorit Mehrof, Sandy Engelhardt
- Sprache Englisch
- Gewicht 365g
- Untertitel 4th MICCAI Workshop, DGM4MICCAI 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings
- Größe H235mm x B155mm x T13mm
- Jahr 2024
- EAN 9783031727436
- Format Kartonierter Einband
- ISBN 3031727436
- Veröffentlichung 09.10.2024
- Titel Deep Generative Models