Deep Learning and Scientific Computing with R torch

CHF 96.65
Auf Lager
SKU
OM6VS06DBQ4
Stock 1 Verfügbar
Geliefert zwischen Di., 25.11.2025 und Mi., 26.11.2025

Details

This book aims to be useful to (almost) everyone. Deep Learning and Scientific Computing with R Torch provides a thorough introduction to torch basics - both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torch.


torch is an R port of PyTorch, one of the two most-employed deep learning frameworks in industry and research. It is also an excellent tool to use in scientific computations. It is written entirely in R and C/C++.

Though still "young" as a project, R torch already has a vibrant community of users and developers. Experience shows that torch users come from a broad range of different backgrounds. This book aims to be useful to (almost) everyone. Globally speaking, its purposes are threefold:

  • Provide a thorough introduction to torch basics - both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torch
  • Again with a focus on conceptual explanation, show how to use torch in deep-learning applications, ranging from image recognition over time series prediction to audio classification
  • Provide a concepts-first, reader-friendly introduction to selected scientific-computation topics (namely, matrix computations, the Discrete Fourier Transform, and wavelets), all accompanied by torch code you can play with. Deep Learning and Scientific Computing with R torch is written with first-hand technical expertise and in an engaging, fun-to-read way.

    Autorentext

    Sigrid Keydana is an Applied Researcher at Posit (formerly RStudio, PBC). She has a background in the humanities, psychology, and information technology, and is passionate about explaining complex concepts in a concepts-first, comprehensible way.

    Inhalt

    Part 1. Getting familiar with torch 1. Overview 2. On torch, and how to get it 3. Tensors 4. Autograd 5. Function minimization with autograd 6. A neural network from scratch 7. Modules 8. Optimizers 9. Loss functions 10. Function minimization with L-BFGS 11. Modularizing the neural network Part 2. Deep learning with torch 12. Overview 13. Loading data 14. Training with luz 15. A first go at image classification 16. Making models generalize 17. Speeding up training 18. Image classification, take two: Improving performance 19. Image segmentation 20. Tabular data 21. Time series 22. Audio classification Part 3. Other things to do with torch: Matrices, Fourier Transform, and Wavelets 23. Overview 24. Matrix computations: Least-squares problems 25. Matrix computations: Convolution 26. Exploring the Discrete Fourier Transform (DFT) 27. The Fast Fourier Transform (FFT) 28. Wavelets

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781032231396
    • Genre Business Encyclopedias
    • Sprache Englisch
    • Anzahl Seiten 394
    • Herausgeber Chapman and Hall/CRC
    • Größe H234mm x B156mm
    • Jahr 2023
    • EAN 9781032231396
    • Format Kartonierter Einband
    • ISBN 978-1-03-223139-6
    • Veröffentlichung 05.04.2023
    • Titel Deep Learning and Scientific Computing with R torch
    • Autor Sigrid Keydana
    • Gewicht 453g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470