Deep Learning for Human Activity Recognition

CHF 84.80
Auf Lager
SKU
3CV9VD6N0EH
Stock 1 Verfügbar
Free Shipping Kostenloser Versand
Geliefert zwischen Di., 04.11.2025 und Mi., 05.11.2025

Details

This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format.
The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.

Klappentext

This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format. The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.


Inhalt
Human Activity Recognition using Wearable Sensors: Review, Challenges, Evaluation Benchmark.- Wheelchair Behavior Recognition for Visualizing Sidewalk Accessibility by Deep Neural Networks.- Toward Data Augmentation and Interpretation in Sensor-Based Fine-Grained Hand Activity Recognition.- Personalization Models for Human Activity Recognition With Distribution Matching-Based Metrics.- Resource-Constrained Federated Learning with Heterogeneous Labels and Models for Human Activity Recognition.- ARID: A New Dataset for Recognizing Action in the Dark.- Single Run Action Detector over Video Stream - A Privacy Preserving Approach.- Efcacy of Model Fine-Tuning for Personalized Dynamic Gesture Recognition.- Fully Convolutional Network Bootstrapped by Word Encoding and Embedding for Activity Recognition in Smart Homes.- Towards User Friendly Medication Mapping Using Entity-Boosted Two-Tower Neural Network.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09789811605741
    • Editor Xiaoli Li, Le Zhang, Zhenghua Chen, Min Wu
    • Sprache Englisch
    • Auflage 1st edition 2021
    • Größe H235mm x B155mm x T9mm
    • Jahr 2021
    • EAN 9789811605741
    • Format Kartonierter Einband
    • ISBN 9811605742
    • Veröffentlichung 18.02.2021
    • Titel Deep Learning for Human Activity Recognition
    • Untertitel Second International Workshop, DL-HAR 2020, Held in Conjunction with IJCAI-PRICAI 2020, Kyoto, Japan, January 8, 2021, Proceedings
    • Gewicht 242g
    • Herausgeber Springer Nature Singapore
    • Anzahl Seiten 152
    • Lesemotiv Verstehen
    • Genre Informatik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.