Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Deep Learning for Social Media Data Analytics
Details
This edited book covers ongoing research in both theory and practical applications of using deep learning for social media data. Social networking platforms are overwhelmed by different contents, and their huge amounts of data have enormous potential to influence business, politics, security, planning and other social aspects. Recently, deep learning techniques have had many successful applications in the AI field. The research presented in this book emerges from the conviction that there is still much progress to be made toward exploiting deep learning in the context of social media data analytics. It includes fifteen chapters, organized into four sections that report on original research in network structure analysis, social media text analysis, user behaviour analysis and social media security analysis. This work could serve as a good reference for researchers, as well as a compilation of innovative ideas and solutions for practitioners interested in applying deep learning techniques to social media data analytics.
Covers ongoing research in both theory and practical applications Presents recent research on deep learning for social media data analytics Shows challenges emerged from the volume of social media data
Inhalt
Node Classification using Deep Learning in Social Networks.- NN-LP-CF: Neural Network based Link Prediction on Social Networks using Centrality-based Features.- Deep Learning for Code-Mixed Text Mining in Social Media: A Brief Review.- Convolutional and Recurrent Neural Networks for Opinion Mining on Drug Reviews.- Text-based Sentiment Analysis using Deep Learning Techniques.- Social Sentiment Analysis Using Features based Intelligent Learning Techniques.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031108686
- Genre Technology Encyclopedias
- Auflage 1st edition 2022
- Editor Tzung-Pei Hong, Anupam Biswas, Akrati Saxena, Leticia Serrano-Estrada
- Lesemotiv Verstehen
- Anzahl Seiten 312
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T23mm
- Jahr 2022
- EAN 9783031108686
- Format Fester Einband
- ISBN 303110868X
- Veröffentlichung 19.09.2022
- Titel Deep Learning for Social Media Data Analytics
- Untertitel Studies in Big Data 113
- Gewicht 635g
- Sprache Englisch