Deep Learning in Textual Low-Data Regimes for Cybersecurity

CHF 150.95
Auf Lager
SKU
L4UVHLK3ENL
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

In today's fast-paced cybersecurity landscape, professionals are increasingly challenged by the vast volumes of cyber threat data, making it difficult to identify and mitigate threats effectively. Traditional clustering methods help in broadly categorizing threats but fall short when it comes to the fine-grained analysis necessary for precise threat management. Supervised machine learning offers a potential solution, but the rapidly changing nature of cyber threats renders static models ineffective and the creation of new models too labor-intensive. This book addresses these challenges by introducing innovative low-data regime methods that enhance the machine learning process with minimal labeled data. The proposed approach spans four key stages:

Data Acquisition: Leveraging active learning with advanced models like GPT-4 to optimize data labeling.
Preprocessing: Utilizing GPT-2 and GPT-3 for data augmentation to enrich and diversify datasets.
Model Selection: Developing a specialized cybersecurity language model and using multi-level transfer learning.
Prediction: Introducing a novel adversarial example generation method, grounded in explainable AI, to improve model accuracy and resilience.


Autorentext

Dr. rer. nat. Markus Bayer is a research associate and post-doctoral researcher at the Chair of Science and Technology for Peace and Security (PEASEC) in the Department of Computer Science at the Technical University of Darmstadt.


Inhalt

Introduction.- Research Design.- Findings.- Discussion.- Conclusion.- Information Overload in Crisis Management: Bilingual Evaluation of Embedding Models for Clustering Social Media Posts in Emergencies.- ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot Scenarios.- A Survey on Data Augmentation for Text Classification.- Data Augmentation in Natural Language Processing: A Novel Text Generation Approach for Long and Short Text Classifiers.- Design and Evaluation of Deep Learning Models for Real-Time Credibility Assessment in Twitter.- CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain.- Multi-Level Fine-Tuning, Data Augmentation, and Few-Shot Learning for Specialized Cyber Threat Intelligence.- XAI-Attack: Utilizing Explainable AI to Find Incorrectly Learned Patterns for Black-Box Adversarial Example Creation.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783658487775
    • Genre Technology Encyclopedias
    • Lesemotiv Verstehen
    • Anzahl Seiten 347
    • Herausgeber Springer Vieweg
    • Größe H210mm x B148mm
    • Jahr 2025
    • EAN 9783658487775
    • Format Kartonierter Einband (Kt)
    • ISBN 978-3-658-48777-5
    • Veröffentlichung 21.08.2025
    • Titel Deep Learning in Textual Low-Data Regimes for Cybersecurity
    • Autor Markus Bayer
    • Untertitel Technology, Peace and Security I Technologie, Frieden und Sicherheit
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470