Deep Learning Techniques for Music Generation

CHF 188.40
Auf Lager
SKU
QR4OS64HVCB
Stock 1 Verfügbar
Geliefert zwischen Mo., 09.02.2026 und Di., 10.02.2026

Details

This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure.

The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.


Authors' analysis based on five dimensions: objective, representation, architecture, challenge, and strategy Important application of deep learning, for AI researchers and composers Research was conducted within the EU Flow Machines project

Inhalt
Introduction.- Method.- Objective.- Representation.- Architecture.- Challenge and Strategy.- Analysis.- Discussion and Conclusion. <p

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319701622
    • Anzahl Seiten 312
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2020
    • Sprache Englisch
    • Herausgeber Springer International Publishing
    • Gewicht 635g
    • Untertitel Computational Synthesis and Creative Systems
    • Größe H241mm x B160mm x T23mm
    • Jahr 2019
    • EAN 9783319701622
    • Format Fester Einband
    • ISBN 3319701622
    • Veröffentlichung 20.11.2019
    • Titel Deep Learning Techniques for Music Generation
    • Autor Jean-Pierre Briot , François-David Pachet , Gaëtan Hadjeres

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38