Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems

CHF 139.15
Auf Lager
SKU
H7D5R3K8968
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.


The book aims to highlight the potential of deep learning (DL)-enabled methods in intelligent fault diagnosis (IFD), along with their benefits and contributions.The authors first introduce basic applications of DL-enabled IFD, including auto-encoders, deep belief networks, and convolutional neural networks. Advanced topics of DL-enabled IFD are also explored, such as data augmentation, multi-sensor fusion, unsupervised deep transfer learning, neural architecture search, self-supervised learning, and reinforcement learning. Aiming to revolutionize the nature of IFD, Deep Neural Networks-Enabled Intelligent Fault Diangosis of Mechanical Systems contributes to improved efficiency, safety, and reliability of mechanical systems in various industrial domains.The book will appeal to academic researchers, practitioners, and students in the fields of intelligent fault diagnosis, prognostics and health management, and deep learning.

Autorentext

Ruqiang Yan is a professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include data analytics, AI, and energy-efficient sensing and sensor networks for the condition monitoring and health diagnosis of large-scale, complex, dynamical systems.

Zhibin Zhao is an assistant professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include sparse signal processing and machine learning, especially deep learning for machine fault detection, diagnosis, and prognosis.


Inhalt

1Introduction and Background Part I: Basic applications of deep learning enabled Intelligent Fault Diagnosis 2Auto-encoders for Intelligent Fault Diagnosis 3Deep Belief Networks for Intelligent Fault Diagnosis 4Convolutional Neural Networks for Intelligent Fault Diagnosis Part II: advanced topics of deep learning enabled Intelligent Fault Diagnosis 5Data Augmentation for Intelligent Fault Diagnosis 6Multi-sensor Fusion for Intelligent Fault Diagnosis 7: Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis 8: Neural Architecture Search for Intelligent Fault Diagnosis 9: Self-Supervised Learning (SSF) for Intelligent Fault Diagnosis 10: Reinforcement Learning for Intelligent Fault Diagnosis

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09781032752372
    • Genre Mechanical Engineering
    • Sprache Englisch
    • Anzahl Seiten 206
    • Herausgeber CRC Press
    • Größe H254mm x B178mm
    • Jahr 2024
    • EAN 9781032752372
    • Format Fester Einband
    • ISBN 978-1-03-275237-2
    • Veröffentlichung 06.06.2024
    • Titel Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems
    • Autor Yan Ruqiang , Zhibin Zhao
    • Untertitel Mechanical System
    • Gewicht 453g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470