Dense Image Correspondences for Computer Vision

CHF 119.95
Auf Lager
SKU
A0FD0IEIOSB
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code and data, necessary for expediting the development of effective correspondence-based computer vision systems.

Provides in-depth coverage of dense-correspondence estimation Covers both the breadth and depth of new achievements in dense correspondence estimation and their applications Includes information for designing computer vision systems which rely on efficient and robust correspondence estimation

Autorentext
Prof. Tal Hassner is a faculty member of the Department of Mathematics and Computer Science, The Open University of Israel, Israel. Ce Liu is a Researcher with Google.

Inhalt
Introduction to Dense Optical Flow.- SIFT Flow: Dense Correspondence across Scenes and its Applications.- Dense, Scale-Less Descriptors.- Scale-Space SIFT Flow.- Dense Segmentation-aware Descriptors.- SIFTpack: A Compact Representation for Efficient SIFT Matching.- In Defense of Gradient-Based Alignment on Densely Sampled Sparse Features.- From Images to Depths and Back.- DepthTransfer: Depth Extraction from Video Using Non-parametric Sampling.- Joint Inference in Image Datasets via Dense Correspondence.- Dense Correspondences and Ancient Texts.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319359144
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage Softcover reprint of the original 1st edition 2016
    • Editor Ce Liu, Tal Hassner
    • Sprache Englisch
    • Anzahl Seiten 308
    • Herausgeber Springer International Publishing
    • Größe H235mm x B155mm x T17mm
    • Jahr 2016
    • EAN 9783319359144
    • Format Kartonierter Einband
    • ISBN 3319359142
    • Veröffentlichung 23.08.2016
    • Titel Dense Image Correspondences for Computer Vision
    • Gewicht 470g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470