Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Design And Analysis Of A Low Pass FIR Filter Using Genetic Algorithm
Details
Genetic Algorithm (GA) is a computational evolutionary search technique which is based on Darwin's theory of natural selection i.e. "best fittest will survive". The advantage of Evolutionary algorithm is it searches a population of points in parallel, not a single point. GA has been used for the designing & analysis of Finite Impulse Response (FIR) Low Pass Filter (LPF) by optimizes the error function i.e. Mean Square Error (MSE). In this the coefficients of the filter are treated as chromosomes which are optimized by the Genetic Algorithm to obtain a filter that would satisfy prescribed specifications and also reduces the multipliers and adders of the FIR filter making the system cost effective. After designing of FIR low pass digital filter, it is also compared with other designing methods viz. Equiripple, Least Square, Window techniques and Parks-McClellan Algorithm; to verify the improved accuracy in terms of transition width and reduced side lobes.
Autorentext
Rahul Kumar Sahu received his B.Tech. Degree in Electronics and Communication Engineering from Gautam Buddh Technical University,Uttar Pradesh, India in 2011 and Master of Engineering in Communication Control and Networking (CCN) from Madhav Institute of Technology & Science,Gwalior under RGPV University Bhopal, Madhya Pradesh, India in 2015.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659786655
- Genre Electrical Engineering
- Sprache Englisch
- Anzahl Seiten 88
- Herausgeber LAP LAMBERT Academic Publishing
- Größe H220mm x B150mm x T6mm
- Jahr 2015
- EAN 9783659786655
- Format Kartonierter Einband
- ISBN 3659786659
- Veröffentlichung 22.09.2015
- Titel Design And Analysis Of A Low Pass FIR Filter Using Genetic Algorithm
- Autor Rahul Kumar Sahu , Vandana Vikas Thakare
- Untertitel Using Mean Square Error Approach
- Gewicht 149g