Design And Analysis Of A Low Pass FIR Filter Using Genetic Algorithm

CHF 62.35
Auf Lager
SKU
A2HEASQO5TT
Stock 1 Verfügbar
Geliefert zwischen Fr., 21.11.2025 und Mo., 24.11.2025

Details

Genetic Algorithm (GA) is a computational evolutionary search technique which is based on Darwin's theory of natural selection i.e. "best fittest will survive". The advantage of Evolutionary algorithm is it searches a population of points in parallel, not a single point. GA has been used for the designing & analysis of Finite Impulse Response (FIR) Low Pass Filter (LPF) by optimizes the error function i.e. Mean Square Error (MSE). In this the coefficients of the filter are treated as chromosomes which are optimized by the Genetic Algorithm to obtain a filter that would satisfy prescribed specifications and also reduces the multipliers and adders of the FIR filter making the system cost effective. After designing of FIR low pass digital filter, it is also compared with other designing methods viz. Equiripple, Least Square, Window techniques and Parks-McClellan Algorithm; to verify the improved accuracy in terms of transition width and reduced side lobes.

Autorentext

Rahul Kumar Sahu received his B.Tech. Degree in Electronics and Communication Engineering from Gautam Buddh Technical University,Uttar Pradesh, India in 2011 and Master of Engineering in Communication Control and Networking (CCN) from Madhav Institute of Technology & Science,Gwalior under RGPV University Bhopal, Madhya Pradesh, India in 2015.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783659786655
    • Genre Electrical Engineering
    • Sprache Englisch
    • Anzahl Seiten 88
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T6mm
    • Jahr 2015
    • EAN 9783659786655
    • Format Kartonierter Einband
    • ISBN 3659786659
    • Veröffentlichung 22.09.2015
    • Titel Design And Analysis Of A Low Pass FIR Filter Using Genetic Algorithm
    • Autor Rahul Kumar Sahu , Vandana Vikas Thakare
    • Untertitel Using Mean Square Error Approach
    • Gewicht 149g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470