Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Diagnosis of the Powertrain Systems for Autonomous Electric Vehicles
Details
Tunan Shen aims to increase the availability of powertrain systems for autonomous electric vehicles by improving the diagnostic capability for critical faults. Following the fault analysis of powertrain systems in battery electric vehicles, the focus is on the electrical and mechanical faults of the electric machine. A multi-level diagnostic approach is proposed, which consists of multiple diagnostic models, such as a physical model, a data-based anomaly detection model, and a neural network model. To improve the overall diagnostic capability, a decision making function is designed to derive a comprehensive decision from the predictions of various operating points and different models.
Increase diagnostic capability using multi-stage diagnostic models
Autorentext
Tunan Shen did his PhD project at the Institute of Automotive Engineering (IFS), University of Stuttgart, Germany. Currently he is Software Developer for Cross Domain Computing Solutions at a German automotive supplier.
Inhalt
Background and State of the Art.- Diagnosis of Electrical Faults in Electric Machines.- Diagnosis of Mechanical Faults in Electric Machines.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658369910
- Lesemotiv Verstehen
- Genre Mechanical Engineering
- Auflage 1st edition 2022
- Sprache Englisch
- Anzahl Seiten 152
- Herausgeber Springer VS
- Größe H210mm x B148mm x T9mm
- Jahr 2022
- EAN 9783658369910
- Format Kartonierter Einband
- ISBN 3658369914
- Veröffentlichung 03.03.2022
- Titel Diagnosis of the Powertrain Systems for Autonomous Electric Vehicles
- Autor Tunan Shen
- Untertitel Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart
- Gewicht 207g